Activation of microglial P2Y12 receptor is required for outward potassium currents in response to neuronal injury.

نویسندگان

  • P Swiatkowski
  • M Murugan
  • U B Eyo
  • Y Wang
  • S Rangaraju
  • S B Oh
  • L-J Wu
چکیده

Microglia, the resident immune cells in the central nervous system (CNS), constantly survey the surrounding neural parenchyma and promptly respond to brain injury. Activation of purinergic receptors such as P2Y12 receptors (P2Y12R) in microglia has been implicated in chemotaxis toward ATP that is released by injured neurons and astrocytes. Activation of microglial P2Y12R elicits outward potassium current that is associated with microglial chemotaxis in response to injury. This study aimed at investigating the identity of the potassium channel implicated in microglial P2Y12R-mediated chemotaxis following neuronal injury and understanding the purinergic signaling pathway coupled to the channel. Using a combination of two-photon imaging, electrophysiology and genetic tools, we found the ATP-induced outward current to be largely dependent on P2Y12R activation and mediated by G-proteins. Similarly, P2Y12R-coupled outward current was also evoked in response to laser-induced single neuron injury. This current was abolished in microglia obtained from mice lacking P2Y12R. Dissecting the properties of the P2Y12R-mediated current using a pharmacological approach revealed that both the ATP and neuronal injury-induced outward current in microglia was sensitive to quinine (1mM) and bupivacaine (400μM), but not tetraethylammonium (TEA) (10mM) and 4-aminopyridine (4-AP) (5mM). These results suggest that the quinine/bupivacaine-sensitive potassium channels are the functional effectors of the P2Y12R-mediated signaling in microglia activation following neuronal injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ATP-induced chemotaxis of microglial processes requires P2Y receptor-activated initiation of outward potassium currents.

Microglial cells are the resident macrophages that are involved in brain injuries and infections. Recent studies using transcranial two-photon microscopy have shown that ATP and P2Y receptors mediated rapid chemotactic responses of miroglia to local injury. However, the molecular mechanism for microglial chemotaxis toward ATP is still unknown. To address this question, we employed a combination...

متن کامل

Neuronal hyperactivity recruits microglial processes via neuronal NMDA receptors and microglial P2Y12 receptors after status epilepticus.

Microglia are highly dynamic immune cells of the CNS and their dynamism is proposed to be regulated by neuronal activities. However, the mechanisms underlying neuronal regulation of microglial dynamism have not been determined. Here, we found an increased number of microglial primary processes in the hippocampus during KA-induced seizure activity. Consistently, global glutamate induced robust m...

متن کامل

Microglial P2Y12 Deficiency/Inhibition Protects against Brain Ischemia

OBJECTIVE Microglia are among the first immune cells to respond to ischemic insults. Triggering of this inflammatory response may involve the microglial purinergic GPCR, P2Y12, activation via extracellular release of nucleotides from injured cells. It is also the inhibitory target of the widely used antiplatelet drug, clopidogrel. Thus, inhibiting this GPCR in microglia should inhibit microglia...

متن کامل

Hemin Induces the Activation of NLRP3 Inflammasome in N9 Microglial Cells

Background: Hemin is an important sterile component that induces a neuroinflammatory response after intracerebral hemorrhage, in which NLRP3 inflammasome activation has also proved to be involved. Although microglial activation acts as a key contributor in the neuroinflammatory response, the relationship between hemin and NLRP3 in microglia remains poorly understood. Objective: To investigate w...

متن کامل

A Simulation-Based Study of Dorsal Cochlear Nucleus Pyramidal Cell Firing Patterns

A two-variable integrate and fire model is presented to study the role of transient outward potassium currents in producing temporal aspects of dorsal cochlear nucleus (DCN) pyramidal cells with different profiles namely the chopper, the pauser and the buildup. This conductance based model is a reduced version of KM-LIF model (Meng & Rinzel, 2010) which captures qualitative firing features of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 318  شماره 

صفحات  -

تاریخ انتشار 2016